Groundwater Remediation and Dual-Biofilm Barrier for Treatment of Chlorobenzenes

Edward Bouwer¹

Steven Chow¹, Michelle Lorah², Amar Wadhawan³, Neal Durant⁴

Johns Hopkins University - Baltimore, MD;
 U.S. Geological Survey - Baltimore, MD;
 Arcadis U.S. Inc. - Hanover, MD;
 Geosyntec Consultants - Columbia, MD

NIEHS Webinar

April 22, 2019

Groundwater remediation background

- Over the past 30 years, some progress made on hazardous waste site remediation
 - 360 of 1,723 (21%) National Priorities List sites have been "cleaned up"
 - 70% of the 3,747 sites regulated under RCRA have "control of human exposure"
 - Closure of over 1.7 million underground chemical storage tanks since 1984
- Complete restoration of contaminated groundwater is difficult, not likely to be achieved in less than 100 years at many sites
- Difficult sites to remediate: large size, heterogeneous hydrogeology, and multiple (and recalcitrant) contaminant
- Over 126,000 sites remain in the U.S. with residual contamination
- Estimated cost to complete: **\$110-\$127 billion**

EPA

SUPERFUND SITE

WARNING: lazardous materials

present at this site No Trespassing.

Bioremediation

- Requires appropriate organisms and favorable biogeochemistry
- Natural Attenuation
- Enhanced in-situ Bioremediation
 - Treatment of contaminated source zones and groundwater plumes
 - Biostimulation: delivery of electron donors, electron acceptors, or other growth factors (e.g., nutrients)
 - Bioaugmentation: amendment of the subsurface with certain microbes
- Used as the remedy at approx. 25-30% of Superfund sites
- Common applications for chlorinated solvents, petroleum hydrocarbons (BTEX, PAHs), PCBs, and pesticides
- Both aerobic and anaerobic processes

Chlorinated solvents – a continuing legacy

- Versatile uses dry cleaning solvents, coolants, degreasers, deodorizers, herbicides, chemical intermediates
- Common contaminants TCE, PCE, PCBs, CBs
- 881 of 5,068 (17%) National Water Quality Assessment wells tested positive for chlorinated solvents (1985 – 2002)
- 8% of EPA National Priority List sites contaminated with chlorobenzenes (CBs) (1990 estimate)

Contaminant profile - chlorobenzenes

- Sparingly soluble, semi-volatile dense nonaqueous phase liquids (DNAPLs)
- Chronic low-dose exposure
 - Allergic sensitivity
 - Respiratory inflammation
 - Oxidative stress
 - Suspected carcinogenesis
- EPA drinking water max concentration limits
 - 1 μg/L (HCB)
 - 600 μg/L (1,2-DCB)
 - 8 CBs + benzene on EPA priority contaminant list

Physical properties of select chlorobenzenes

	Mono- (MCB)	Di- (DCB)	Tri- (TCB)
Aq. Solubility [mg/L]	450	130	17
Vapor P* [Pa]	1665	197	45
K _{oc} * [mg/mg]	466	987	2670
*at 25° C			

Solubility, volatility, mobility

Site Overview

Standard Chlorine Superfund Site

- 2,000,000 L of mixed mono-, diand tri-chlorobenzenes (CBs) released from tanks and containment pond
- Extensive remediation at industrial site (excavation, barrier wall, pump and treat)
- Adjacent wetland remains highly contaminated with DNAPL concentrations

Lorah et al. 2014. USGS

Remediation challenge

- Long-lasting dissolved CB plumes are discharged from subsurface, through wetlands, and into watershed
- At shallow depths, anaerobic porewater is aerated by surfaceassociated processes to create an anaerobic-aerobic "interface" in sediments

Surface

Surface 🗾 oxygenation

Reactive barrier concept

- Deploy as a mat near surface of "gaining" hydraulic systems
- Options for matrix composition
 - High-permeability sand
 - Degrading microbial inocula
 - Sorptive activated carbon
 - Complex electron donor (chitin, peat, mulch, etc)
- Benefits
 - Low capital costs (digging, materials)
 - Low maintenance (substrate replacement, pumping)
 - Minimal disturbance below surface layer
 - Sequestration + degradation potential

Coupled anaerobic – aerobic biodegradation

- **1. Anaerobic:** reduce highly-chlorinated (highly oxidized) compounds to less-chlorinated products
 - External substrate + CB e⁻ acceptor
 - Toxic daughter products remain
 - Mineralization possible, but MCB stall common
- 2. Aerobic: oxidize less-chlorinated CBs to innocuous products
 - CB substrate + O₂ e⁻ acceptor
 - Complete mineralization

Demonstrated with CBs¹, PCBs², chloroethenes and chloroethanes³, azo dyes⁴, and others

- Redox conditions can be temporally and spatially heterogeneous at sites
- Other externalities (chemical spills, flooding, seasonality) introduce even more perturbation
- SCD site survey
 - Average 14-56 mg/L DOC
 - 0.42 1090 mg/L sulfate

Research questions

- What is the potential for CB biodegradation at anaerobic-aerobic interfaces?
- How do natural geochemical conditions affect the dynamics of the degradation processes?
 - e⁻ donor availability
 - Alternative e⁻ acceptor availability

Simulating the interface

source

Conceptual model

Experimental design

Diluted **Aerated Water**

Simulating the interface

Packed columns

Bioaugmentation cultures

Anaerobic

degrader culture

(WBC-2, SiREM

Labs)

Aerobic degrader enrichment Upflow simulated groundwater system

1. Filter Sand 2. Site Sediment + Filter Sand

- 300-day continuous flow study
- Low-sulfate, sterilized simulated media
- Excess 6-7 mg/L 1,2,4-TCB contaminant
- Aeration to ~ 7 mg/L O_2 in aerobic zone

Proof of concept

Cycled 15.5, 31, and 155 mg/L sodium lactate (NaLac) influent e⁻ donor doses (5-50 mg/L DOC)

- Sustained anaerobic and aerobic CB degradation over time
- Dechlorination pathway: 1,2,4-TCB → 13/14-DCB → MCB
- Degradation pathways spatially separated across interface

Influence of electron donor concentration

↑NaLac

- Enhanced reductive dechlorination
- Minimal addition (31 mg/L) enhanced aerobic degradation
- Above threshold (155 mg/L), inhibition of aerobic degradation

 residual organic acids and sulfides depleted O₂

Sand matrix

- Sensitive to NaLac dose
- Greatest observed mineralization

Sediment addition

 Stable, enhanced dechlorination at all inputs

Microbial community profile

- Populations highest at influent and at anaerobicaerobic interface
- *Dehalobacter* enriched in biofilm as anaerobic dechlorinator (shift from *Dhc* and *Dhg* in WBC-2)
- High enrichment in sediment column (up to 50% of community)
- Low enrichment (<1%) in sand column
 - More sensitive to lower concentrations, but same order of magnitude degradation
- Sediment column enriched with functional bacteria
 - Desulfosporisinus (sulfate reduction)
 - Methanosarcina (methanogenesis)
 - Thiobacillus (sulfur oxidation)
- Sand enriched with functionally ambiguous biofilm-forming bacteria (Comamonas, Pseudomonas)
- Diverse aerobic generalists difficult to determine aerobic bacteria

Functionally-relevant bacteria

Influence of electron acceptor dose

- 300-day parallel column study
- Simple sand matrix system
- Vary nitrate and sulfate doses over time

Stepped e⁻ acceptor concentrations in experiment nhases

			phuses			
Phase	Time	NO ₃ -		SO42-		n
	(d)	mМ	mg/L	mМ	mg/L	11
I	60	0	0	0.15	14	7
Ш	60	0.15	9.3	0.5	48	5
Ш	58	0.5	31	2.5	240	6
IV	103	2.5	160	10	960	3

Influence of electron acceptor dose

Stepped e⁻ acceptor concentrations in experiment

			pnases			
Phase	Time	NO ₃ -		SO42-		n
	(d)	mМ	mg/L	mМ	mg/L	
I	60	0	0	0.15	14	7
П	60	0.15	9.3	0.5	48	5
Ш	58	0.5	31	2.5	240	6
IV	103	2.5	160	10	960	3

↑ Nitrate

- \downarrow Reductive dechlorination
- Aerobic degradation
- Significant change >= .5 mM

↑ Sulfate

- \downarrow Reductive dechlorination
- \downarrow Aerobic degradation
- Significant change >=2.5 mN

Nitrate effect on electron donor / acceptor utilization

Anaerobic reduction processes

- ↑NO₃-
 - Nitrate reduction outcompetes other anaerobic processes, forming permanent e⁻ donor sink
 - CB dechlorination inhibited
 - Depletes residual organic acids within anaerobic zone
- Majority of e⁻ donor (>99.5%) not used for CB dechlorination (observed in all columns and conditions)

- ↑NO₃-
 - Inhibited organic acid and sulfide production minimizes competition for O₂
 - CB oxidation dominates
- No NO₃⁻ reduction in aerobic zone, so NO₃⁻ not utilized as supplemental e⁻ acceptor for CB degradation

Sulfate effect on electron donor / acceptor utilization

Anaerobic reduction processes

Aerobic oxidation processes

- $\uparrow SO_4^{2-}$
 - Increased sulfate reduction
 - Propionate formation and CB dechlorination inhibited.
 - Methanogenesis and acetate fermentation persist
 - Residual organic acids remain

- $\uparrow SO_4^{2-}-$
 - Increased competition for O₂ by reduced sulfides, limiting aerobic CB degradation
 - Aerobic CB degradation persists
- Unlike NO₃⁻, reduced sulfur easily reoxidized by aerobes

Sulfur detrimental to both anaerobic and aerobic CB degradation processes, wasting donor/acceptor as intermediate between lactate and O_2

- Both anaerobic and aerobic pathways sustained in model anaerobic-aerobic interface
 - However, necessity for reductive dechlorination to facilitate aerobic degradation not demonstrated with 1,2,4-TCB. Aerobic degradation potential may be congener, site, and community-dependent
- DOC had stimulatory effect on both aerobic and anaerobic degradation processes, but above certain threshold (50 mg/L DOC) increased O₂ demand inhibited aerobic degradation
- Sediment amendment facilitated enhanced anaerobic processes
- SO₄²⁻ negatively impacted reductive dechlorination; reduced S⁻ downgradient negatively impacts aerobic degradation
- NO₃⁻ negatively impacted reductive dechlorination; enhanced aerobic degradation, serving as sink for competing e⁻ donors

- Both anaerobic and aerobic pathways sustained in model anaerobic-aerobic interface
 - However, necessity for reductive dechlorination to facilitate aerobic degradation not demonstrated with 1,2,4-TCB. Aerobic degradation potential may be congener, site, and community-dependent
- DOC had stimulatory effect on both aerobic and anaerobic degradation processes, but above certain threshold (50 mg/L DOC) increased O₂ demand inhibited aerobic degradation
- Sediment amendment facilitated enhanced anaerobic processes
- SO₄²⁻ negatively impacted reductive dechlorination; reduced S⁻ downgradient negatively impacts aerobic degradation
- NO₃⁻ negatively impacted reductive dechlorination; enhanced aerobic degradation, serving as sink for competing e⁻ donors

- Both anaerobic and aerobic pathways sustained in model anaerobic-aerobic interface
 - However, necessity for reductive dechlorination to facilitate aerobic degradation not demonstrated with 1,2,4-TCB. Aerobic degradation potential may be congener, site, and community-dependent
- DOC had stimulatory effect on both aerobic and anaerobic degradation processes, but above certain threshold (50 mg/L DOC) increased O₂ demand inhibited aerobic degradation
- Sediment amendment facilitated enhanced anaerobic processes
- SO₄²⁻ negatively impacted reductive dechlorination; reduced S⁻ downgradient negatively impacts aerobic degradation
- NO₃⁻ negatively impacted reductive dechlorination; enhanced aerobic degradation, serving as sink for competing e⁻ donors

- Both anaerobic and aerobic pathways sustained in model anaerobic-aerobic interface
 - However, necessity for reductive dechlorination to facilitate aerobic degradation not demonstrated with 1,2,4-TCB. Aerobic degradation potential may be congener, site, and community-dependent
- DOC had stimulatory effect on both aerobic and anaerobic degradation processes, but above certain threshold (50 mg/L DOC) increased O₂ demand inhibited aerobic degradation
- Sediment amendment facilitated enhanced anaerobic processes
- SO₄²⁻ negatively impacted reductive dechlorination; reduced S⁻ downgradient negatively impacts aerobic degradation
- NO₃⁻ negatively impacted reductive dechlorination; enhanced aerobic degradation, serving as sink for competing e⁻ donors

Field-scale testing

С

- Field tests by collaborators at US Geological Survey
- 1 x 1 m² test plots at contaminated SCD Superfund wetland
- Sand mixed with GAC, chitin, and bacteria cultures mixed with site sediment
- 2 pilot sites with distinct geochemical conditions (Sites 8, 135)
- Monitor total VOCs and geochemical conditions through time and compared to control plot

Sediment contaminant mass

44 to 74% decrease in sediment mass of CBs in first 12 days compared to controls

 After 12 days, there is still a consistent decrease in total CBs within the reactive barrier zone on each sampling date, but sediment total mass no longer changes significantly over time

Groundwater contaminant mass

Total CBs mass from groundwater influx through barrier, cumulative post-install

- Mass contribution from groundwater influx is 1,000x greater than sediment mass
- An increase in sediment mass of CBs would have been clearly evident if only sorption to GAC accounted for the removal of CBs from the groundwater
- Because groundwater concentrations exiting the reactive barriers at surface were non-detect:

groundwater influx mass = mass removed from water

All data in this presentation are provisional.

In situ Microcosms

Bio-Traps (Microbial Insights) used to conduct in situ microcosms, with and without Biosep beads that pre-loaded with ¹³C-labeled monochlorobenzene.

- Concurrent microbial and isotopic data to verify biodegradation activity.
- Measure incorporation of ¹³C in CO2 and PLFA. ۲
- Analysis of functional genes to relate microbial presence to degradation ability.

Installed at 10-20 cm bls

- inside and outside reactive barrier plots
- similar depth-integrated microbial sample as the GAC samplers
- time-integrated over 50day incubation.

Is biodegradation in the reactive barriers enhanced compared to the control sediment areas, and does aerobic and anaerobic biodegradation co-occur?

¹³C-Monochlorobenzene in Biomass in Bio-Traps

- High ¹³C uptake in biomass (PLFA) in the reactive barrier at site 135 indicates high aerobic oxidation of MCB.
- Agrees with the observed higher abundance of aerobic oxidizers and functional genes at site 135 compared to site 8.

¹³C-Monochlorobenzene in Bio-Traps

- Incorporation of ¹³C in CO₂ was **high in both reactive barriers** and low in the controls, verifying complete enhanced biodegradation in the reactive barriers.
- Complete degradation to CO₂ is ~ equal in the two reactive barriers, despite the lower use of MCB as growth substrate at site 8. Indicates a combination of anaerobic (¹³C for energy) and aerobic biodegradation processes in the reactive barrier.

Questions?

Steven Chow (<u>schow@jhu.edu</u>) Ed Bouwer (<u>bouwer@jhu.edu</u>) Michelle Lorah (<u>mmlorah@usgs.gov</u>)

Bouwer Research Group: <u>bouwerlab.jhu.edu</u>

Acknowledgements:

- Dr. Sarah Preheim
- Dr. Eric Sakowski
- Huan Luong
- Shun Che

- Amanda Sun
- Nicole Cohen
- Annabel Mungan

Funding Source:

National Institute of Environmental Health Sciences Your Environment. Your Health.

Superfund Research Program (Grant #:5R01ES024279-02)

Collaborating Organizations:

Geosyntec[▶]

consultants

Remediation implications

- High potential for natural site matrices to degrade CBs anaerobically and aerobically
- Under site-simulated conditions...
 - 1.8-6.9 mg/L 1,2,4-TCB continuously degraded aerobically (rates > 1.6 mg/L-hr⁻¹) across simulated interface
 - 1.5 kg/m²-year⁻¹ dechlorinating capacity
 - 0.32 kg/m²-year⁻¹ mineralization capacity
- Sites with high sulfate or other re-oxidizable electron acceptors (Fe, Mn, etc.) may suppress anaerobic and aerobic bioremediation efforts
- 16S amplicon sequencing useful tool to ID anaerobic functional potential; less clear aerobic potential

Research needs

- Characterize shifts in microbial communities and functionally-relevant organisms under varied redox conditions (in progress)
- Develop specific tools (shotgun metagenomics, qPCR assays) targeting aerobic functional potential in metabolic generalists
- Development of commercial *Dehalobacter*-based enrichments for CB dechlorination (potential for anaerobic mineralization?)
- Determine impacts of sorption on biodegradation at anaerobic-aerobic interfaces
 - Longer CB retention may possibly facilitate anaerobic mineralization via dechlorination to benzene?